Overexpression of HIF-1α transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats.

نویسندگان

  • Qing Zhu
  • Zhengchao Wang
  • Min Xia
  • Pin-Lan Li
  • Fan Zhang
  • Ningjun Li
چکیده

Hypoxia inducible factor (HIF)-1α-mediated gene activation in the renal medulla in response to high salt intake plays an important role in the control of salt sensitivity of blood pressure. High salt-induced activation of HIF-1α in the renal medulla is blunted in Dahl S rats. The present study determined whether the impairment of the renal medullary HIF-1α pathway was responsible for salt sensitive hypertension in Dahl S rats. Renal medullary HIF-1α levels were induced by either transfection of HIF-1α expression plasmid or chronic infusion of CoCl₂ into the renal medulla, which was accompanied by increased expressions of anti-hypertensive genes, cyclooxygenase-2 and heme oxygenase-1. Overexpression of HIF-1α transgenes in the renal medulla enhanced the pressure natriuresis, promoted the sodium excretion and reduced sodium retention after salt overload. As a result, hypertension induced by 2-week high salt was significantly attenuated in rats treated with HIF-1α plasmid or CoCl₂. These results suggest that an abnormal HIF-1α in the renal medulla may represent a novel mechanism mediating salt-sensitive hypertension in Dahl S rats and that induction of HIF-1α levels in the renal medulla could be a therapeutic approach for the treatment of salt-sensitive hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats.

BACKGROUND In response to high salt intake, transcription factor hypoxia-inducible factor (HIF) 1α activates many antihypertensive genes, such as heme oxygenase 1 (HO-1) 1 and cyclooxygenase 2 (COX-2) in the renal medulla, which is an important molecular adaptation to promote extra sodium excretion. We recently showed that high salt inhibited the expression of HIF prolyl-hydroxylase 2 (PHD2), a...

متن کامل

Hypoxia inducible factor-1α-mediated gene activation in the regulation of renal medullary function and salt sensitivity of blood pressure.

Many enzymes that produce natriuretic factors such as nitric oxide synthase (NOS), hemeoxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) are highly expressed in the renal medulla. These enzymes in the renal medulla are up-regulated in response to high salt intake. Inhibition of these enzymes within the renal medulla reduces sodium excretion and increases salt sensitivity of arterial blood pressur...

متن کامل

Hypoxia-inducible factor prolyl-hydroxylase 2 senses high-salt intake to increase hypoxia inducible factor 1alpha levels in the renal medulla.

High salt induces the expression of transcription factor hypoxia-inducible factor (HIF) 1alpha and its target genes in the renal medulla, which is an important renal adaptive mechanism to high-salt intake. HIF prolyl-hydroxylase domain-containing proteins (PHDs) have been identified as major enzymes to promote the degradation of HIF-1alpha. PHD2 is the predominant isoform of PHDs in the kidney ...

متن کامل

Hypoxia-Inducible Factor Prolyl-Hydroxylase 2 Senses High-Salt Intake to Increase Hypoxia Inducible Factor 1 Levels in the Renal Medulla

High salt induces the expression of transcription factor hypoxia-inducible factor (HIF) 1 and its target genes in the renal medulla, which is an important renal adaptive mechanism to high-salt intake. HIF prolyl-hydroxylase domain-containing proteins (PHDs) have been identified as major enzymes to promote the degradation of HIF-1 . PHD2 is the predominant isoform of PHDs in the kidney and is pr...

متن کامل

Renal medullary 11 beta-hydroxysteroid dehydrogenase type 1 in Dahl salt-sensitive hypertension.

The Dahl salt-sensitive rat is a widely used model of human salt-sensitive forms of hypertension. The kidney plays an important role in the pathogenesis of Dahl salt-sensitive hypertension, but the molecular mechanisms involved remain a subject of intensive investigation. Gene expression profiling studies suggested that 11 beta-hydroxysteroid dehydrogenase type 1 might be dysregulated in the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1822 6  شماره 

صفحات  -

تاریخ انتشار 2012